The Architecture of a Network Level Intrusion

Detection System”

Richard Heady George Luger Arthur Maccabe
Mark Servilla

Department of Computer Science
University of New Mexico
.-'\“m(]llt‘:'qln‘. NM 87131

March 15, 1990

Abstract

This paper presents the preliminary architecture of a network level in-
trusion detection system. The proposed system will monitor base level in-
formation in network packets (source, destination, packet size, and time),
learning the ‘normal’ patterns and announcing anomalies as they occur.
The goal of this reserach is to determine the applicability of current in-
trusion detection technology to the detection of network level intrusions
In particular, we are investigating the possibility of using this technology

to detect and react to worm programs.

1 Introduction

Protection of resources is an important aspect of any computing system. Three
aspects of network/distributed systems make these systems more vunerable to
attack than independent machines: 1) networks typically provide more resources
than independent machines, 2) network systems are typically configured to fa-
cilitate resource sharing, and 3) global protection policies which are applied to

all of the machines in a network are rare.

The research project described in this report is aimed at investigating the
applicability of intrusion detection techniques to detect network level intrusions.
In particular, we are investigating the possibility of developing a system which
can detect and react to worm programs. A “worm” program is characterized by
the fact that the program moves from one node in a network to another. The

*This work was supported in part by the Office of Safeguards and Security of the US Dep.
uclear Safeguards Group (N-4) of Los Alamos National Laboratory.

of Energy through the N

March 15, 1990

Preliminary Draft

Internet worm of November 1988 [10] provided ample demonstration of the fact
that computer networks are susceptible to this type of attack.

Protection encompasses the integrily, confidentiality, and availability of the
a computing system. Historically, protection has been
curity model [7]. Security models are based on
a set of resources (frequently called

resources provided by
provided in the context of a se
the concept of an action which is applied to
objects). Each action can be attributed to an individual user, the initiator of the
action. A security model specifies which actions are permitted based on the ini-
»jects involved in the action, and the context in which
ry action performed in the computing

ation of the security model.

tiator of the action, the ol
the action is requested. Importantly, eve
system must be validated by an implement

There are at least three ways in which a computing system based on the
security model approach can be compromised: an incorrect implementation of
the model, an inaccurate authentication of the user, or an insider attack. Any

implementation of a security
The more complex the mode
between the implementation and the model. Any such discre
viewed as a means by which the integrity, confidentiality, or availability of a
resource could be compromised.

The implementation of a security model incorporates an authentication mod-
ule which is used to identify the individual initiating actions in the system. At
best, the authentication module provides a high level of confidence that the
individual initiating an action has been correctly identified. Regardless of its
complexity, every authentication module can be compromised. When the au-
is compromised, i.e., an individual is incorrectly identified,
r provides protection for the resources of the com-

model is at best an approximation of the model.
I the more likely it is that there is a discrepancy
pancy must be

thentication module
the security model no longe
puting system.

Finally, the security model
ciated with an imsider attack. It
granted the right to manipulate an object may abuse th
ity is not addressed in most security models. As such, a privileged individual can
compromise the integrity, confidentiality, or availability of the resources which
he or she has been authorized to manipulate.

Given these difficulties, several researchers have proposed that the traditional
¢ augmented with an intrusion detection system [6, 9, 8, 12].
Any set of actions that attempt to compromise the integrity, confidentiality, or
availability of a resource is termed an intrusion. An intruder is the individual
ho initiates the actions in the intrusion. Intrusion
d on the belief that an intrusion will be reflected by a
rns of resource usage. As such, intrusion detection
nonitor specific types of activities and announce
alies announced by an intrusion

approach does not address the problems asso-
is possible that an individual who has been
at right. This possibil-

security model b

or group of individuals w
detection systems are base
change in the ‘normal’ patte
systems have been developed to1
anomalies in the behaviors observed. The anom
detection system serve as an indication that an intrusion may be in progress.

If the intrusion detection system bases its monitoring on the actions per-

March 15, 1990

Preliminary Draft

as in the IDES system), the monitoring can be viewed

formed by an individual (
the individual’s behavior

as an on-going authentication process. In this sense,
will continue to authenticate his or her identity as long
of the normal behavior for the individual. How-
dividual are significantly different than
e individual, there is reason to suspect
that an intrusion has

as those activities are

within an acceptable variance
ever, if the activities performed by an in
the activities normally performed by th

the individual is not who he or she claims to be - i.e.,

occurred.
ls, intrusion detection systems are not immune to attack.

Like security models
Because behaviors change over time, intrusion detection systems must be capa-
actions that they monitor. As such, a

ble of adapting to reflect changes in the
careful intruder can ‘teach’ the intrusion detectior
tern which may culminate in invalid access to resources in the system.
e intrusion detection system scrves to increase the time it takes to
compromise the resources of the system and may increase the probability that
the intruder will give up or be caught by alternative mechanisms.

The research project described in this report represents an attempt to apply
associated with intrusion detection to the network level of a

1 system a new behavior pat-
In this

context th

the techniques
computing system.

2 Overview

etwork security system is to define network be-
e or improper use of the network and look
While such an approach may be capable of
it would allow new or undocu-

One approach to designing a n
havior patterns that indicate intrusiv
for the occurrence of those patterns.

detecting known varieties of intrusive behavior,
etected. As a result, our decision was to build

a system which monitors and learns normal network behavior and then detects
deviations from it. Qur assumption, therefore, is that normal network traffic
will be characterized by discernible patterns of data flow, and that intrusive

behavior will in some way violate those patterns.
The description of oar proposed system design will be divided into two sec-

mented types of attack to go und

tions:

1. A module which monitors a local network and captures information about

data packet transmission. This module will sample the network transmis-
sions to create a statistically valid profile of the full data flow, and it will

perform some preprocessing of the saved data.

d information from (1) as input to

9. A module which uses the preprocesse
1 which learns normal patterns of

a classifier system and genetic algorithn
network traffic and flags deviations from those patterns.

Figure 1 gives an overview of the system design.

Preliminary Draflt March 15, 1990

Network

Data Sampling
and
Preprocessing

Classifier

System

Normal/Abnormal
Decision

Figure 1: Basic architecture of intrusion detection system.
o o

3 Data Sampling and Preprocessing

The first step in collecting data is to determine exactly what type of data should
be collected. Since the goal of this project is directed toward intrusion detec-
tion at the network level a natural choice of data is the network transmission
packet. The network packet provides us with two types of information to study,

transport information and user information. We have chosen to usc only the

transport information as a primary source of data.

The second step in collecting data is to develop some mechanism for mon-
itoring network packets. Since detecting an intrusion is not dependent on the
specific method used to monitor packets, any mechanism capable of obtaining
a valid data sampling is satisfactory. Currently, we are using a software pack-
age that allows monitoring of an Ethernet network. To our disadvantage, this
particular software does not provide a valid sampling of network packets due to
a significant loss of packets during the monitoring phase. Although we cannot
base any results on the information provided by this software, we can use the
information to observe the classifier system.

The final step in collecting data is to process it in such a way that it is com-
pressed in size and in a format acceptable to the classifier system. In practice,

this preprocessing phase is very simple to implement.

Preliminary Dralt March 15, 1990

8.1 A Choice of Packet Data

In the case of network traffic we decided to use only unbiased data. Unbiased
data is simply the information in a network packet that cannot be made decep-
tive by a fraudulent user.

In practical terms, a network packet can be partitioned into two forms of
information, fransport information and user information[10]. Transport infor-
mation generally consists of the source-destination ordered pair and some type
of checksum on which the integrity of the packet is determined. Transport infor-
mation is added to the packet as part of the network transmission protocol and
cannot be directly affected by the user of a network. In other words, transport
information is an artifact of the system and not the user. We therefore consider
transport information to be unbiased data.

On the other hand, user information is information which the user wishes to
ort across the network. User information may vary from individual key

transp
wgates of text in a file transfer. This type of information

strokes to large aggre
can be directly manipulated by the user. A fraudulent user can easily modify

this information to be deceptive, and we therefore consider user information to

be biased data.

3.2 The Physical Connection

Presently, all data collection takes place on a SUN Microsystems 3/60 work-
station provided by the Computer and Information Resources and Technology
(CIRT) center at the University of New Mexico (UNM). The SUN 3/60 is con-
nected to an intra-center Ethernet which receives external network traffic via the
Campus Data Communication Network (CDCN). The CDCN is a broadband
twork and is the backbone along which UNM traffic is handled.

To monitor Ethernet traffic, we use the Network Interface Tap (NIT) facility
provided by SUN Microsystems as part of their SUN Operating System network
software utilities[1]. At this time, NIT is the only software available on our hard-
configurations which allows promiscuous access to Ethernet traffic. There
a serious problem involving continuous data collection when using

ne

ware
is, however,
NIT. A significant loss of Ethernet packets are attributed to monitoring on a

multitasking system and to an unknown error in the NIT software. Both prob-
lems will be discussed in greater detail below. Let us first provide an overview

of NIT.

3.2.1 Network Interface Tap (NIT)

oo

NIT is a facility composed of several streams modules and drivers which pro-
vide link-level network access. As such, NIT is capable of both reading from
and writing to the Ethernet device. NIT performs this service by placing itsell
between the Ethernet device and a user process. When NIT is initialized as a

March 13, 1990

Preliminary Drall

reading device, it attempts to copy the packets which enter the Ethernet device
buffer and return them as a stream of data. When initialized as a writing de-
vice, NIT requires the user process to supply an input stream of data which is
then transmitted out onto the network through the Ethernet device. The com-
ponents which collectively provide this service are the inferface (nit_if), packel

filter (nit_pfl), and buffering (nit_buf) modules.

The Interface Module The primary component of NIT is the interface
module[2]. The interface module is a streams device driver which interacts di-
rectly with the system’s Ethernet device. The interface module transcribes pack-
ets from the Ethernet device to the read side of the stream or from the write
side of the stream to the Ethernet device for transmission on the network. When
NIT is opened as a reading device, the interface module provides additional in-
formation which may be prepended to the transcribed packet if desired. The
information includes the size of the received packet, a timestamp marking the
time of reception, and a cumulative count of dropped packets from the time the

device was first opened’.

The Packet Filter Module An optional module provided by NIT 1s the
packet filter module[3]. The packet filter module operates only when NIT is
Iter which

opened as a reading device. The module subjects each packet to a filte

passes only those packets that the filter accepts on to its upstream destination.

The Buffering Module Also optional, the buffering module can be used
to increase system efficiency[4]. The buffering module places an internal buffer
between the Ethernet device and the user process. Packets which are copied by
NIT are buffered into larger aggregates, thereby reducing the overhead incurred

by repeated reads of the Ethernet device bufTer.

3.2.2 Problems Inherent to NIT

A serious problem that we have encountered with the NIT facility is signifi-
cant packet loss during the monitoring phase. At the present time, we can only
hypothesize as to the cause of this loss. As described above, NIT provides in-
termediate buffering between the Ethernet device and the stream device at the
user level. When operating in promiscuous mode, NIT attempts to copy all of
the packets which are processed by the Ethernet device intoits own buffer. But,
NIT is also a process running in a multitasking environment. Inevitably, NIT
is pre-empted by the operating system scheduler in favor of another process.
While NIT is in a pre-empted state the Ethernet device continues to process

INIT software documentation explains that dropped packets are a result of system con-

straints. Presumably, these “system constraints” are one possible source of our sampling

problems.

March 15, 1990

Preliminary Dralt

incoming packets; these packets are never seen by NIT. The ensuing problem
results in a packet loss of approximately 75 percent. The percentage of loss was
empirically calculated by recording the cumulative sizes of identifiable packets
during a file transfer over the network and comparing that value with the actual
size of the file. Observed losses were in the range of 75 to 95 percent.

Another problem which we have associated with the NIT facility is the pos-
sibility that internal data structures are being destroyed during periods of exe-
cution longer than 20 scconds. As a result, the system is left in an indeterminate

and must be rebooted to recover. To remedy this problem, the NIT inter-

state
application program. Resetting

face is reset at 5 seconds intervals by the monitor
the interface during the monitoring phase incurs additional packet losses.
Realizing that the percentage of packet loss is too great for valid testing

purposes, we are now pursuing alternative methods for data collection.

3.2.3 The Monitor Application Program

application is comprised of the NIT interface module and
We find no practical use at this time to filter any of
g the NIT packet filter module. Functionally, the
ad side of the NIT stream device for a specified

The network monitor
the NIT buffering module.
the incoming packets by usin
monitor program polls the re
length of time collecting packets.

Prior to reading the stream device NIT is configured in the following order.

First, the stream device is opened with the C system call open. After opening
the NIT stream device, the buffering module is configured and the NIT device is
bound to the SUN Ethernet device interface. Finally, the read buffer is flushed
to remove anything that may have accumulated before the device reached its
final configuration. Once the configuration is accomplished, the monitoring pro-
gram executes a polling loop which continues until a specified time-out occurs.
Within the polling loop two events take place: packet information is read from
the NIT stream device and written to a file, and the NIT interface is reset at 5
second intervals®. Resetting the NIT interface is required to prevent the indeter-
minate state problem described above. The relationship between the Ethernet
device, the NIT facility, and the monitor application program is demonstrated
in Figure 2. The reader is referred to the Appendix for a source listing of the

monitor program.
As mentioned e

packet is recorded.

ing module or the monitor appl

arlicr, only the transport information portion of the network
All other information is discarded by either the NIT buffer-
ication program. The NIT buffering module is
configured to build aggregates of only the first 58 bytes of the Ethernet packet.
The 58 bytes include the prepended packet information which the NIT inter-
face module supplies, the Ethernet packet header information, and the Internet
packet header information if the network transmission protocol is TCP/IP. Once

is greater than 5 seconds.

2Resetting the NIT interface takes place only il the time-out value

Preliminary Drall March 135, 1990

ey Tl
Ethernet
Controller _,-I

P

Ethernet
Driver

Ethernet Bufler

i

NIT)
Polling Loop
o,

NIT Bufler

(M(milor\

Polling Loop /
. -

Figure 2: NIT interface facility.

ailable from the NIT stream device, the monitor application
program 1) reads the aggregate into a temporary buffer, 2) filters out the packet
length value, the cumulative packet drop value®, the timestamp value, and the
ordered pair from the buffer, and 3) writes this
information to a file. A total of 28 bytes from each observed packet is recorded.

During an average monitoring session we are able to collect approximately
160 packets in a one second interval. This results in a file growth rate of 4,480

bytes per second or more than 1 Megabyte every four minutes. Remembering
this growth rate reflects only 25

that NIT loses a large number of packets,
nt of the actual Ethernet traffic on our network. Data accumulation at

perce
this rate will inundate even the largest storage disks after a day of monitoring
we realize that the amount of data

the network. Even with data compression,
collected during a 24 hour monitoring session would be overwhelming. Therefore,
we are currently looking at various methods of discrete sampling to reduce the

amount of data to be collected.

the aggregate is av

Ethernet source-destination

3.3 Data Preprocessing
Of the data fields currently saved, there are only four of the five types which are
important to the classifier system. These are the packet size value, the times-

3To date, we have been unable to determine the meaning of the number in the packet drop

field.

Preliminary Dralt March 15, 1990

tamp value, and the Ethernet source-destination ordered pair?. The cumulative

packet drop value is of interest only to verify the performance of our monitoring

application program. k
There are two reasons for preprocessing the data:

1. In the cases of source and destination addresses and packet sizes, the raw
data can be compressed without loss of relevant information. This results
in data which is easier for the classifier system to manipulate and which

requires less off-line disk space for storage.

2. In the case of timestamp information, the basic second count provided is
augmented to include the contextual information of hour of day and day
of week. This allows the building of network behavior profiles that are

based on human temporal patterns.

3.3.1 Address

Representation of an Ethernet address, whether destination or source, requires
6 bytes. This ensures that there will be a sufficient number of distinct addresses
available for each unique Ethernet controller within a computer system. How-
ever, we will only see a very small set of these addresses in any given LAN.
Therefore, each Ethernet address in our LAN will be mapped into a two byte

value.

3.3.2'‘Sive

The size of an Ethernet packet can vary from 64 to 1518 bytes[10]. However,
the packets can be readily grouped into a much smaller number of categories.
For example, a single keystroke packet may contain transport information and
the data which represents the keystroke — one or two bytes. In contrast, a file
transfer program will attempt to utilize the largest available packet size possible

to transfer a large aggregate of data in a single packet. Data size information,
We

therefore, can be compressed into groups of naturally occurring clusters.
expect the reduction to be from 1518 to on the order of 4 to 16 categories.

3.3.3 Time

The timestamp value provided by the NIT facility is a relative time based on
the absolute time 00:00:00 GMT January 1, 1970. To capture the full potential
of time information we will transform the NIT timestamp to one that includes
second, minute, hour, and day of week information.

4\We refer to the Ethernet source-destination ordered pair as if it is a single value. It is

actually comprised of two separate and independent values.

Preliminary Dralt March 15, 1990

4 Learning Normal Network Patterns and Flag-
ging Deviations: The Classifier System and
Genetic Algorithm

The input for this module of the system consists of simple packet transmission
4-tuples. These 4-tuples include the packet’s source, destination, size, and time
with the time including the contextual information of hour of
k. While these individual events are simple enough, over
rred from them about the operation of a network.

of transmission,
day and day of wee
time a great deal can be infe
They can be grouped in an i
characteristics that might be

npressive number of ways. A brief list of possible
relevant to the problem at hand includes:

o Has a packet transmission been received from a previously uncatalogued
source?

Is the total network traffic over the last n minutes within the expected
bounds for this hour of day and day of the week?

o Is the pattern of transmission from a given source to all other processors
in the network over the last hour outside the bounds of expected difference

by some statistical measure for this time of the day?

« Does the shape of a size histogram of all packet transmissions over the last

n minutes match the normal shape
How about for a given source-destination pair, or for some subset of all

source-destination pairs?

of such a histogram closely enough?

o Has the number of packet transmissions increased every minute for the

last n minutes?

o Has some combination of the above events occurred in the last n minutes?

and categories can be enlarged indefinitely. The point

The list of questions
given a context. The

is that individual events acquire meaning only by being
context that is needed is a set of categories, existing in time, into which indi-
vidual events and parts of events can be placed. The analysis of these categories

can then reveal patterns of normal network behavior, which can in turn be used

to detect abnormal behavior.
Proper choice of meaningful cat
ficulty lies in the fact that patterns

egories, however, is a difficult task. The dif-
of normal network behavior will not be
apparent unless good classification of event categories are chosen. A good cate-
gory, however, is by definition one which reveals patterns of normal behavior.
For instance, suppose the number of packet transmissions between a source-
destination pair over a ten minute period is chosen as a category to be monitored.
Whether this is indeed a meaningful category will depend on whether a statis-
tical characterization of the source-destination transmissions over ten minules

10

Preliminary Dralt March 15, 1990

can be found such that normal network behavior falls within the characteriza-
tion and intrusive or questionable behavior falls outside of it. This is a question
that can only be answered by experience. We are left with a circular definition,
which suggests an iterative approach to defining categories.

The design we plan to implement is based on the classifier system and genetic
algorithm model described by Booker, Goldberg, and Holland [5]. The model

consists of three main components:

1. A classifier system, which is a parallel, message-passing, rule-based system
The system uses rules that are sensitive to input messages, as well as rules

that integrate messages from other rules, to eventually develop an output

message.

2. A credit assignment algorithm, which evaluates the usefulness and pre-
dictive power of individual rules. Each rule has a strength factor which is
increased or decreased each time a rule is part of a chain that cflects the
output message, depending on whether the rule contributed to a correct

or incorrect prediction.

Igorithm that periodically modifies the set of rules in the clas-
Rules whose low strength factors indicate they are poor
aced by new rules formed by com-
factors indicate they are good

3. A genetic a
sifier system.
predictors are removed. They are repl
bining parts of rules whose high strength

predictors.

The components of the model, illustrated in Figure 3 are now described in

more detail.

4.1 The Classifier System

As stated above, the classifier system is a parallel, message-passing, rule-based

system. All rules are of the condition/action form: the condition is the receipt
of messages containing information that activates the rule, and the action is
es when the rule is satisfied. All messages contain a tag
specifying their origin and an information field. For concreteness, all messages
can be thought of as being a bit string of fixed length. The first n bits could
field. Each of the remaining bits could encode the presence or
, depending on whether they contained a 0 or

the sending of messag

represent the tag
absence of some simple conditior

% l.
A classifier system, then, consists of four parts:

1. An input interface. In our case this will be a message that contains the
information from a 4-tuple describing an individual packet transmission.

9. The classifiers. These are rules which define the ways in which the system

consumes and creates messages.

11

March 15, 1990

Preliminary Draft

Classifier

System

Normal/Abnormal
Decision

Rule Credit
Assignment

I

Genetic Algorithm
(Rule Addition and Deletion)
R ———

assifier system Jearning and decision process, with feedback from

genetic algorithms.

Figure 3: The cl
the credit assignmen

t and

Preliminary Draft March 15, 1990

Rule 1

update count

count

Rule 3
? count > 50

o
awpue[T T] .

Figure 4: Classifier rules to determine the normal transmission threshold of

packets of size 100 over a one second period.

essages yet to be considered by the classifier

3. The message list. A list of all m
m the input interface or from satisfied rules.

rules. The messages may be fro

4. An output interface. In our case this will consist of a message indicating
whether current network behavior is believed to be normal or abnormal.
In the event of abnormal behavior, the message may also contain a list of
rules that fired to flag the abnormality and a confidence factor for each

rule.

As a simple example of how the classifier system works, suppose that trans-
missions of packets of size 100 were being considered as an indicator of normal
network behavior. Suppose also that we were interested in the number of packets
of size 100 over a one second period and that we wished to evaluate 5, 50, and
150 as possible thresholds of abnormality. Then we would have the following

four classifier rules, ilustrated in Figure 4.

nterface. It would use the

« Rule 1 would read all messages from the input i
tain a count of packets of

size and time values in those messages to main
size 100 over a sliding time window of one second. After processing an

input message it will put a message of its own on the message list with

the updated count for the last second.

put on the message list by Rule 1. If the current

« Rule 2 reads all messages
er the last second exceeds 5 then Rule 2

count of packets of size 100 ov

13

Preliminary Dralt March 15, 1990

in turn puts a message on the message list saying its threshold has been

Crlh&(‘(l.

o Rules 3 and 4 also read all messages from Rule 1, and if the current count
exceeds their respective thresholds of 50 and 150 they also put messages

on the list.

The output interface attends to all messages from Rules 2, 3, and 4. When
any of those rules has fired and put a message on the list indicating its threshold
has been exceeded the output interface will notify the environment that the rule
is predicting the occurrence of abnormal behavior. Over time the thresholds
embedded in each of the rules can be evaluated by how well their predictions
correlate with the actual occurrence of normal and abnormal network activity.
This brings us to the need for a credit assignment algorithm.

4.2 The Credit Assignment Algorithm

As mentioned earlier, each classifier rule will have a strength factor associated
with it. When it is created a rule’s strength factor will be initialized to some
standard value. Each time a rule fires and puts a message on the message list its
strength factor will be Jdecremented. If feedback through the output interface
shows that the rule was correct in its prediction of the type of activity that
was occurring then it will be rewarded by having its strength factor increased.
In the example just described, if it was in fact perfectly normal to see 120
transmissions of packets of size 100 over a one second period then the rules with
thresholds of 5 and 50 would fire frequently. Each time they posted a message
they would pay for the privilege with part of their strength factor. Il they were
never rewarded for having correctly predicted abnormal activity, their strength
ally dissipate and they would become candidates for removal by the
m. The rule with threshold of 150, however, might only fire when
abnormal activity was in fact occurring. In that case its strength factor would
increase. That increase would ensure its continued existence and also make it a
candidate for combination with other strong rules under the genetic algorithm
to make new conjunctive rules.

Unfortunately, the assignment of credit to rules is not quite so straightfor-
ward as the discussion so far might indicate. For instance, consider the classifier
rules represented in Figure 5. Rules 1 and 2 both read the input message and
fire when they detect the presence of some condition. Rule 3 reads messages
from both 1 and 2 and fires only when both of them have fired. Messages from
all three rules are read by the output interface. It may be that Rules 1 and 2
predict abnormality too often individually, but that in conjunction, as Rule 3,
they are very accurate predictors. If reenforcement for correct prediction only
came directly from the output interface, then 1 and 2 would grow weaker over
time even though they had considerable value when used together in 3.

would gradu
genetic algorith

14

*

Preliminary Draft March 15, 1990

oulput:[_l] l }

ample illustrating the need for a “bucket brigade” credit assign-
p g g

Figure 5: An ex
ment algorithm.

The solution to the problem is in what is known as a “bucket brigade”
e algorithm is based on the recognition that many rules which
are actually the result of longer, more
given credit by the output interface
at credit back

algorithm. Th
send messages to the output interface
complex reasoning chains. When a rule is
for a correct prediction, therefore, it in turn passes some of th
up to all of the rules that had to fire in order for it to fire. These contributing
rules, in their turn, pass back some portion of the credit they receive to the rules
that enabled them to fire. The result is that all rules in the chain that leads
to the rule that ultimately makes a prediction receive some of the reward when
that prediction is correct. Returning to the simple example of the preceding
when Rule 3 is correct it takes some fraction of the increase to its

paragraph,
and passes the resulting strength increases

own strength factor, divides it evenly,

back to Rules 1 and 2.
In addition to evaluating rules to guide their manipulation by the genetic

algorithm, strength factors can also be used to manage the size of the computa-
assifier system after each input message. The classifier
system is essentially a system to generate and test hypotheses. Especially in its
early stages it may consist of a very large number of rules. If the number of
messages generated by each event becomes larger than desired, then the rules
governing the firing of a given classifier rule can be changed. Rather than firing
every time it receives all the messages that enable it to fire, a rule only fires
probabilistically, based on its strength factor. That is, the higher its strength
factor, the higher the chance it will fire when its conditions are met. The lower
its strength factor, the lower the chance it will fire. The size of each computation

tion performed by the cl

15 .

Preliminary Draft March 15, 1990

is thereby constrained, and the attention of the system is focused on the rules
that have proven to be most successful in the past. At the same time, even weak
rules are periodically tested and given a chance to either increase or decrease

their strength.

4.3 The Genetic Algorithm

If the classifier system is viewed as a mechanism to evaluate hypotheses, then the
genetic algorithm can be viewed as a means of eliminating hypotheses that have
proven to be incorrect and generating new ones to be evaluated. Periodically the
genetic algorithm removes the rules with the lowest strength factors from the
list of rules. It then generates new rules to replace the rules it has removed. The
new rules are generated by using various genetic operators to join together parts
of existing rules. For instance, if, as mentioned earlier, messages are viewed as
bit strings where 1 represents the presence of a condition and 0 represents the
absence of a condition, then new rules can be created by switching the conditions
required over some substring of the messages between two rules.

Rather than simply using the rules with the highest strength factors to gen-

rules, strength factors are used to generate a probability that a

erate the new
using the strongest rules

given rule will be used in new rule generation. Just
ould run the danger of biasing the search of the possible rule space too heav-
ily based on the order in which events in the event space were encountered.
Occasionally generating new rules using some of the weaker existing rules al-
Jows exploration of parts of the rule space that might otherwise be completely

ignored.

w

4.4 The Feedback Loop Problem in a Network Security
System

The classifier system requires feedback from the environment in order to assign
credit to its individual rules. In the context of computer network security that
means that a decision must be made whether the current state of data flow in

abnormal. Without knowledge about the current state

the network is normal or
annot be

the predictions of normality or abnormality made by individual rules ¢

determined to be either correct or incorrect.
Initially the classifier system can be considered to be in a learning phase,

and all encountered network behavior can be considered normal. At some point,
it will be necessary to present the system with examples of actual
abnormal conditions in order to make sure that these are not simply regarded
as normal as well. The problem, of course, is that very little information 1s
available about the appearance of a security attack at the network level.

We currently plan to investigate the following approaches:

however,

16

March 15, 1990

Preliminary Drall

1. Obtain records of actual network attacks, simulate them, and test whether
the security system detects them.

2. Generale arbitrary situations of abnormal network data flow and test
whether the system detects them.

3. Generate our own scenarios of network intrusion or attack, implement and
execute them, and test whether the system detects them.

4. Monitor an operating network and wait for an actual intrusion to occur.

5 Summary

k has been done in the area of computer system protection. For
concentrated on protection at the level of
tems. The widespread existence of com-
Internet worm of November,

Considerable wor
the most part, however, that work has
individual machines and operating sys
puter networks, combined with events such as the
1988, demonstrate the need to address protection issues at the network level as
well. The focus of our research is to determine the feasibility of network level
monitoring to protect network resources from attack.

Our initial goal is to build an off-line prototype system capable of learning
normal patterns of network use and flagging departures from those patterns of
normality. Such a system will permit verification of the hypothesis that intrusive
attacks are in fact detectable as deviations from a rule-based profile of normal
behavior. In addition, the prototype will allow us to establish whether the be-
havior profile eventually reaches a state of statistical stability. Our belief is that
alter an initial learning phase during which both rules and the confidence factors
attached to them vary rapidly a state of equilibrium will be reached. At that
point the system will need to be flexible enough to adjust to genuine incremental
changes in normal network behavior, but not so flexible as to allow an intruder
to gradually teach the system to accept new behavior which opens the network
to attack.

Qur longer term rescarch goals include moving from an off-line to an on-line
system in order to provide real-time network level protection. The move to an
on-line system will in turn raise the issue of developing appropriate reactions to
detected intrusions. Attempts to lessen the impact of detected intrusions may
include delaying or ignoring communications involving the suspected participat-

ing nodes.

References

[1] Sun Microsystem’s Operating System 4.0. Section nit

(4P): Protocols.

Deall March 15, 1990

Sun Microsystem's Operating System 4.0. Section nitif (4M): Devices and

a \
Network Interlaces

| Sum Microsystem's Operating System 4.0. Section nit_pf (4M): Devices and

Network Interfaces

Syn Microsystem's Operaling System 4.0. Section nit_buf (4M): Devices

"
and Network Interfaces
H. Holland. Classifier systems and

Artificial Intelligence, 40:235-282, September 1989.

5] L.B Booker. D. E. Goldberg, and : Js

e

genetic algorithms

ntrusion-detection model. In [EEE Symposium

['JJ. Dorothy E. Denning. An 1
ages 118-131. IEEE, 1986.

on Securily and Privacy, p

coar

(7] Carl E Landwehr. Formal models for computer security. A CM Computing

Surveys, 13(3):247-278, September 1981.
ection

.r\ [‘ll’OLOtvpc rcﬂ]-[inl(. il]trusio“-dlft
50 ('ﬂ’,‘
JJI—O0.

[8) T. F. Lunt and R. Jagannathan.
m on Security and Privacy, pages

expert system. In IEEE Symposiu
IEEE, 1988.
Edwards, P.G. Neu-

athan, R. Lee, S. Listgarten, D.L.
Technical

Ises. Ides: The enhanced prototype.
r 1988.

[9] T.F.Lunt, R. Jagann
mann, H.S. Javitz, and A. Va
report, SRI International, Octobe

(10) Eugene F. Spafford. The internet worm: Crisis and aftermath. Communi-

cations of the ACM, 32(6):678-687, June 1989.

(11] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs,

N. J., second edition, 1988.

=

&3

copmuter session

=

E. Liepins. Detection of anomalous

[12] H. S. Vaccaro and G.
urity and Privacy, pages 280-289.

activity. In JEEE Symposium on Sec

IEEE, 1989.

